ZnO nanostructure synthesis for the photocatalytic degradation of azo dye methyl orange from aqueous solutions utilizing activated carbon

Volume 5, Issue 04, Pages 5-19, Dec 2022 *** Field: Nano Chemistry

  • Ahmed Jaber Ibrahim, Corresponding Author, Scientific Research Center, Al-Ayen University, ThiQar 64011, Iraq
Keywords: Degradation, Zinc oxide, Nanostructure, Methyl orange, Photocatalytic

Abstract

In this study, zinc acetate (as a precursor) and activated carbon carboxylic acid derivative were used to create the nanostructure of zinc oxide (ZnO) as a matrix. The carboxylic acid derivative was produced by modifying the oxidized activated carbon with nitric acid (AC-COOH). The modified activated carbon's surface was then impregnated with zinc to load it. By using BET, XRD, and SEM to characterize the ZnO nanostructure, it was discovered that it was composed of nanoparticles with a surface area capacity of 17.78 m2 g-1 and a size range of 21–31 nm. The photocatalytic hydrolysis of the dye methyl orange in an aqueous medium served as a test case for the catalyst's performance. The primary variables were considered, including pH, catalyst dose, stirring effect, and starting dye concentration. Measurements of activity below UV light revealed satisfactory outcomes for photocatalytic hydrolysis of the methyl orange (MO). In addition, the efficiency of the methyl orange (MO) photolysis catalyst prepared with unmodified activated carbon was also evaluated. The outcomes proved that zinc oxide (ZnO), made using a derivative carboxylic acid of activated carbon molecules by a matrix, had more good photocatalytic action than zinc oxide (ZnO) made by the real activated carbon matrix.

References

C. Karthikeyan, P. Arunachalam, K. Ramachandran, A. M. Al-Mayouf, S. Karuppuchamy, Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications, J. Alloy Comp., 828 (2020) 154281. https://doi.org/10.1016/j.jallcom.2020.154281.

X. Nie, S. Wu, P. Lv, H. Ke, F. Huang, Q. Wei, Chameleon-inspired iridescent structural color textiles with reversible multiple stimulus-responsive functions, Chem. Eng. J., 433 (2022) 134410. https://doi.org/10.1016/j.cej.2021.134410.‏

T. S. Naidu, C. M. Sheridan, L. D. van Dyk, Basic oxygen furnace slag: Review of current and potential uses, Miner. Eng., 149 (2020) 106234. https://doi.org/10.1016/j.mineng.2020.106234.

F. M. Valadi, A. Ekramipooya, M. R. Gholami, Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study, J. Mol. Liq., 318(2020) 114051.‏ https://doi.org/10.1016/j.molliq.2020.114051

K. Dahmani, D. E. Kherroub, A. Boucherdoud, B. Bestani, Removal of Ca (II) and Mg (II) hardness by ion exchange resins and soda ash for seawater pretreatment to reduce scale formation in evaporators multi-stage flash desalination, Desalin. Water Treat., 221 (2021) 23-30. https://doi.org/10.5004/dwt.2021.27020.

X. Nie, S. Wu, P. Lv, H. Ke, F. Huang, Q. Wei, Chameleon-inspired iridescent structural color textiles with reversible multiple stimulus-responsive functions, Chem. Eng. J., 433 (2022) 134410. https://doi.org/10.1016/j.cej.2021.134410.

N. Daneshvar, S. Aber, M. S. Dorraji, A. R. Khataee, M. H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Separ. Purif. Tech., 58 (2007) 91-98. https://doi.org/10.1016/j.seppur.2007.07.016.

D. F. Katowah, S. M. Saleh, S. A. Alqarni, R. Ali, G. I. Mohammed, M. A. Hussein, Network structure-based decorated CPA@ CuO hybrid nanocomposite for methyl orange environmental remediation, Sci. Rep., 11 (2021) 1-21.‏ https://doi.org/10.1038/s41598-021-84540-y.

D. Vaya, P. K. Surolia, Semiconductor based photocatalytic degradation of pesticides: An overview, Envirn. Tech. Innovat., 20 (2020) 101128. https://doi.org/10.1016/j.eti.2020.101128. ‏

A.R. Khataee, M.B. Kasiri, L. Alidokht, Application of response surface methodology in the optimization of photocatalytic removal of environmental pollutants using nanocatalysts, Environ. Technol., 32(15) (2011) 1669-1684.https://doi.org/10.1080/09593330.2011.597432.

K. Jain, A. S. Patel, V. P. Pardhi, S. J. S. Flora, Nanotechnology in wastewater management: a new paradigm towards wastewater treatment, Molecules, 26 (2021) 1797. https://doi.org/10.3390/molecules26061797.

M. Amini, M. Kamkar, F. Rahmani, A. Ghaffarkhah, F. Ahmadijokani, M. Arjmand, Multilayer structures of a Zn0. 5Ni0. 5Fe2O4-reduced graphene oxide/PVDF nanocomposite for tunable and highly efficient microwave absorbers, ACS Appl. Elect. Mater., 3 (2021) 5514-5527. https://doi.org/10.1021/acsaelm.1c00940.

L. A. Goulart, G. O. Santos, K. I. Eguiluz, G. R. Salazar-Banda, M. R. Lanza, C. Saez, M. A. Rodrigo, Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates, Chemosphere, 271 (2021) 129451. https://doi.org/10.1016/j.chemosphere.2020.129451.

S. Zhong, D. Xiong, B. Zhang, X. Yang, T. Yang, G. Tian, H. Zhang, W. Yang, W. Deng, Structurally unraveling the photocarrier behavior of Cu2O/ZnO heterojunction photodetectors, ACS Photo., 9 (2022) 268-274.https://doi.org/10.1021/acsphotonics.1c01490.

M. Zare, K. Namratha, S. Alghamdi, Y. H. E. Mohammad, A. Hezam, M. Zare, Q. A. Drmosh, K. Byrappa, B. N. Chandrashekar, S. Ramakrishna, X. Zhang, Novel green biomimetic approach for synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility and solar photocatalysis, Sci. Rep., 9 (2019)1-15. https://doi.org/10.1038/s41598-019-44309-w.

P. K. Aspoukeh, A. A. Barzinjy, S. M. Hamad, Synthesis, properties and uses of ZnO nanorods: a mini review, Int. Nano Lett., (2021)1-16. https://doi.org/10.1007/s40089-021-00349-7.‏

M. A. Desai, A. N. Vyas, G. D. Saratale, S. D. Sartale, Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting, Int. J. Hydrogen Energ., 44 (2019) 2091-2127. https://doi.org/10.1016/j.ijhydene.2018.08.042.

M. Qamar, S. A. Zaidi, M. Rafatullah, M. Qutob, S. J. Kim, Q. A. Drmosh, Role of post-hydrothermal treatment on the microstructures and photocatalytic activity of TiO2-based nanotubes, Catalysts, 12 (2022) 702. https://doi.org/10.3390/catal12070702.

S. Mishra, P. Supraja, P. R. Sankar, R. R. Kumar, K. Prakash, D. Haranath, Controlled synthesis of luminescent ZnS nanosheets with high piezoelectric performance for designing mechanical energy harvesting device, Mater. Chem. Phys., 277 (2022) 125264. https://doi.org/10.1016/j.matchemphys.2021.125264.

A. Czyżowska, A. Barbasz, A review: zinc oxide nanoparticles–friends or enemies?, Int. J. Environ. Health Res., 32 (2022) 885-901. https://doi.org/10.1080/09603123.2020.1805415. ‏[21] M. S. Nasrollahzadeh, M. Hadavifar, S. S. Ghasemi, M. Arab Chamjangali, Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions, Appl. Water Sci., 8 (2018) 1-12. https://doi.org/10.1007/s13201-018-0750-6.

B. Yuliarto, L. Nulhakim, M. F. Ramadhani, M. Iqbal, A. Nuruddin, Improved performances of ethanol sensor fabricated on Al-doped ZnO nanosheet thin films, IEEE Sens. J., 15 (2015) 4114-4120. https://doi.org/10.1109/JSEN.2015.2410995.

B. Ghanbarzadeh, S. A. Oleyaei, H. Almasi, Nanostructured materials utilized in biopolymer-based plastics for food packaging applications, Crit. Rev. Food Sci. Nutr., 55 (2015) 1699-1723. https://doi.org/10.1080/10408398.2012.731023.

Z. Abid, A. Abbas, A. Mahmood, N. F. Rana, S. J. Khan, L. Duclaux, K. M. Deen, N. M. Ahmad, Water treatment using high performance antifouling ultrafiltration polyether sulfone membranes incorporated with activated carbon, Polymers, 14 (2022) 2264. https://doi.org/10.3390/polym14112264.

C. F. Holder, R. E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials, Acs Nano, 13 (2019) 7359-7365. https://doi.org/10.1021/acsnano.9b05157.

A. A. KHAMIS, A comparison of recent analytical methods for analysis of arsenic, The Libyan Conference on Chemistry and Its Applications (LCCA), 1 (2021) 17-24. http://repository.uob.edu.ly/handle/123456789/1617. ‏

F. Nekouei, H. Noorizadeh, S. Nekouei, M. Asif, I. Tyagi, S. Agarwal, V. K. Gupta, Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: isotherm, kinetics and thermodynamic studies, J. Mol. Liq., 213 (2016) 360-368. https://doi.org/10.1016/j.molliq.2015.07.058.

T. Li, X. Ren, L. Bao, M. Wang, W. Bao, L. Chang, Effect of lignite as support precursor on deep desulfurization performance of semicoke supported zinc oxide sorbent in hot coal gas, RSC Adv., 10 (2020) 12780-12787. https://doi.org/10.1039/C9RA10884J. ‏

M. R. Al-Mamun, S. Kader, M. S. Islam, M. Z. H. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review, J. Environ. Chem. Eng., 7 (2019) 103248. https://doi.org/10.1016/j.jece.2019.103248.

P. Muthirulan, M. Meenakshisundararam, N. Kannan, Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution, J. Adv. Res., 4 (2013) 479-484. https://doi.org/10.1016/j.jare.2012.08.005.

F. Nekouei, H. Noorizadeh, S. Nekouei, M. Asif, I. Tyagi, S. Agarwal, V. K. Gupta, Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: isotherm, kinetics and thermodynamic studies, J. Mol. Liq., 213 (2016) 360-368. https://doi.org/10.1016/j.molliq.2015.07.058.

Z. Noorimotlagh, R. Darvishi Cheshmeh Soltani, G. Shams Khorramabadi, H. Godini, M. Almasian, Performance of wastewater sludge modified with zinc oxide nanoparticles in the removal of methylene blue from aqueous solutions, Des. Water Treat., 57 (2016) 1684-1692. https://doi.org/10.1080/19443994.2014.977954.

K. Bisaria, S. Sinha, R. Singh, H. M. Iqbal, Recent advances in structural modifications of photo-catalysts for organic pollutants degradation–a comprehensive review, Chemosphere, 284 (2021) 131263. https://doi.org/10.1016/j.chemosphere.2021.131263.

S. M. Saleh, ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye, Spectrochim. Acta Mol. Biomol. Spectros., 211 (2019) 141-147. https://doi.org/10.1016/j.saa.2018.11.065.

M. A. Hassaan, A. Pantaleo, L. Tedone, M. R. Elkatory, R. M. Ali, A. E. Nemr, G. D. Mastro, Enhancement of biogas production via green ZnO nanoparticles: Experimental results of selected herbaceous crops, Chem. Eng. Comm., 208 (2021) 242-255. https://doi.org/10.1080/00986445.2019.1705797.

J. Saini, V. K. Garg, R. K. Gupta, N. Kataria, Removal of Orange G and Rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC), J. Environ. Chem. Eng., 5 (2017) 884-892. https://doi.org/10.1016/j.jece.2017.01.012.

V. I. Parvulescu, F. Epron, H. Garcia, P. Granger, Recent progress and prospects in catalytic water treatment, Chem. Rev., 122 (2021) 2981-3121. https://doi.org/10.1021/acs.chemrev.1c00527.

S. G. Kumar, K. K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5 (2015) 3306-3351. https://doi.org/10.1039/C4RA13299H.

N. Sobana, B. Krishnakumar, M. Swaminathan, Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide, Mater. Sci. Semicond. Process., 16 (2013) 1046-1051. https://doi.org/10.1016/j.mssp.2013.01.002.

M. Ghaedi, G. Negintaji, F. Marahel, Solid phase extraction and removal of brilliant green dye on zinc oxide nanoparticles loaded on activated carbon: new kinetic model and thermodynamic evaluation, J. Ind. Eng. Chem., 20 (2014) 1444-1452. https://doi.org/10.1016/j.jiec.2013.07.030.

Published
2022-12-29
How to Cite
Ibrahim, A. (2022). ZnO nanostructure synthesis for the photocatalytic degradation of azo dye methyl orange from aqueous solutions utilizing activated carbon. Analytical Methods in Environmental Chemistry Journal, 5(04), 5-19. https://doi.org/10.24200/amecj.v5.i04.200
Section
Original Article