Preparation of chitosan films plasticized by lauric and maleic acids

Volume 5, Issue 04, Pages 43-54, Dec 2022 *** Field: Environmental Chemistry

  • Sara H Mutasher Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
  • Hadi Salman Al-Lami, Corresponding Author, Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
Keywords: Chitosan, Lauric acid, Maleic acid, Films plasticizers, Mechanical properties, Solubility


The energy crisis and environmental concerns have increased interest in natural polymers, and the bio-sourced materials field is experiencing rapid growth. A useful alternative to conventional plastic packaging manufactured from fossil fuels is packaging constructed of biodegradable polymers. Consideration has been given to the instrumental methods for examining modifications to the chemical composition and characteristics of modified chitosan. The molecular weight and the kind of plasticizer present in these materials are the two primary variables influencing their usability and performance. This study set out to physically blend chitosan with two different acids, lauric and maleic, to enhance chitosan cast films' physical and mechanical properties. Different plasticizer ratios appeared to have little effect on the various properties of the chitosan cast films. Examining the obtained films by FTIR implies that chitosan's native structure was unchanged. The films prepared had more flexibility and better solubility than those made with un-plasticized chitosan. It was evident from an analysis of the mechanical properties of the films that both acid plasticizers enhanced the mechanical properties of the chitosan.


E.S. Al-Allaq, H.S. Al-Lami, A.H. Al-Mowali, Synthesis and adsorption study of some chitosan acidic derivatives as dispersants for ceramic alumina powders, Egypt. J. Chem., 63(7) (2020) 2717-2736.

A.A. Mizhir, A.A. Abdulwahid, H.S. Al-Lami, Adsorption of carcinogenic dye Congo red onto prepared graphene oxide-based composites, Desalin. Water Treat., 202 (2020) 381–395.

J. Ji, L. Wang, H. Yu, Y. Chen, Y. Zhao, H. Zhang, W.A. Amer, Y. Sun, L. Huang, M. Saleem, Chemical modifications of chitosan and its applications, Polym-Plast. Technol., 53, (2014) 1494-1505.

S.H. Mutasher, H.S. Al-Lami, Chemically plasticized chitosan films by grafting succinic acid: Surface roughness and mechanical properties, Int. J. Membr. Sci., 9 (2022) 33-39.

E. Czogała, R. Pankalla, Recent attempts in the design of efficient PVC plasticizers with reduced migration, Materials,14 (2021) 844-872.

O. Yesid, Polymer and polymeric composites in encyclopedia of polymer composites, Springer Berlin Heidelberg, 2014. 37179-0

S.S. Muobom, A.M. Umar, Y. Soongseok, A.P. Brolin, A review on plasticizers and eco-friendly bioplasticizers: Biomass sources and market, Int. J. Eng. Res., 9 (5) (2020) 1138-1144.

K. Ledniowska, H. Nosal-Kovalenko, W. Janik, A. Krasuska, D. Stańczyk, E. Sabura, M. Bartoszewicz, A. Rybak, Effective, environmentally friendly PVC plasticizers based on succinic acid, Polymers, 14(7) (2022) 1295-12305.

R.K. Wanchoo, A. Thakur, A. Sweta, Viscometric and rheological behavior of chitosan hydrophilic polymer blends, Chem. Bioch. Eng., 22 (2008)15-24.

J W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci., 38 (2013)1629-1652.

H. Lim, S.W. Hoag, Plasticizer effects on physical-mechanical properties of solvent cast soluplus films, AAPS Pharm. Sci. Tech.., 14 (2013) 903-910.

A. Silva-Weiss, V. Bifani, M. Ihl, P.J.A. Sobral, M.C. Gómez-Guillén, Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with Murata leaf extract, Food Hydrocolloid, 31 (2013) 458-466,

J.M.F. Pavoni, C.L. Lucchese, I.C. Tessaro, Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan-based film, Int. J. Biol. Macromol., 138 (2019) 693-703.

M.S. Hossain, A. Iqbal, Production and characterization of chitosan from shrimp waste, J. Bangladesh Agril. Univ., 12(1) (2014) 153-160.

H.S. Al-Lami, A.A. Saleh, M.A. Jalal, S.H. Mutasher, The effect of synthesized chitosan grafted poly (N-L-lactide) on human genetic material, InnovaCiencia, 6 (2018) 1-10.

A. Yadav, A. Kujur, A. Kumar, P.P. Singh, V. Gupta, B. Prakash, Encapsulation of bunium persicum essential oil using chitosan nanopolymer: Preparation, characterization, antifungal assessment, and thermal stability, Int. J. Biol. Macromol., 142 (2020) 172-180.

J. Hafsa, A. Smach, M. Khedher, M.R. Ben, B. Charfeddine, K. Limem, H. Majdoub, S. Rouatbi, Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil, LWT-Food Sci. Technol., 68 (2016) 356-364.

R. Priyadarshia, Sauraja, B. Kumara, Y.S. Negia, Chitosan films incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life, Carbohydr. Polym., 195 (2018) 329-338.

I.A. Farion, V.F. Burdukovskii, B.Ch. Kholkhoev, P.S. Timashev, R.K. Chailakhyan, Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review, Express Polym. Lett., 12 (2018) 1081-1111.

M.H. Zaboon, A.A. Saleh, H.S. Al-Lami, Synthesis, characterization and cytotoxicity investigation of chitosan-amino acid derivatives nanoparticles in human breast cancer cell lines, J. Mex. Chem. Soc., 65 (2021) 178-188.

J.F. Rubilar, R.M.S. Cruz, H.D. Silva, A.A. Vicente, I. Khmelinskii, M.C. Vieira, Physico-mechanical properties of chitosan films with carvacrol and grape seed extract, J. Food Eng.,115 (2013) 466-474.

A.C.S. de Oliveira, T.A. Santos, J.C. Ugucioni, R.A. da Rocha, S.V. Borges, Effect of glycerol on electrical conducting of chitosan/ polyaniline blends, J. Appl. Polym. Sci., 138 (2021) 14-18.

V.K. Mourya, N.N. Inamdar, Chitosan-modifications and applications: Opportunities galore, React. Funct. Polym., 68(6) (2008) 1013-1051.

S. K. Kim, N. Rajapakse, Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review, Carbohydr. Polym., 62(4) (2005) 357-368.

Z. Cui, E. S. Beach, P.T. Anastas, Modification of chitosan films with environmentally benign reagents for increased water resistance, Green Chem. Lett. Rev., 4(1) (2011) 35-40.

C. Brasselet, G. Pierre, P. Dubessay, M. Dols-Lafargue, J. Coulon, J. Maupeu, A. Vallet-Courbin, H. de Baynast, T. Doco, P. Michaud, C. Delattre, Modification of chitosan for the generation of functional derivatives, Appl. Sci., 9 (2019)1321-1343.

H. A. Al-Mosawi, H. S. Al-Lami, N. A. Awad, Synthesis and characterization of some recycled polystyrene and chitosan-based copolymers for water hardness removal, Bas. J. Sci., 39(3) (2021) 496-514.

R.A. Lusiana, D. Siswanta, M. Mudasir, Preparation of citric acid crosslinked chitosan/poly(vinyl alcohol) blend membranes for creatinine transport, Indo. J. Chem., 16(2) (2016) 144-150.

K.M. Doll, R. L. Shogren, J.L. Willett, G.J. Swift, Solvent-free polymerization of citric acid and hexamethylenediamine for novel carboxylated polyamides, J. Polym. Sci., Part A: Polym. Chem., 44(14) (2006) 4259-4267.

H. Drechsel, G. Jung, G. Winkelmann, Stereochemical characterization of rhizoferrin and identification of its dehydration products, BioMetals, 5(3) (1992) 141-148.

S.H. Hsieh, Z.K. Huang, Z. Z. Huang, Z.S. Tseng, Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan, J. Appl. Polym. Sci., 94(5) (2004) 1999-2007.

S. Mima, M. Miya, R. Iwamoto, S. Yoshikawa, Highly deacetylated chitosan and its properties, J. Appl. Polymer Sci., 28(6) (1983) 1909-1917.

J.A. Adorna, C.K. A. Aleman, I.L. E. Gonzaga, J.N. Pangasinan, K.M.D. Sisican, V.D. Dang, J.R.S. Ventura, Effect of lauric acid on the thermal and mechanical properties of polyhydroxy butyrate (PHB)/starch composite biofilms, Int. J. Polym. Sci., 2020 (2020) 1-11.

D.I. Rudyardjo, S. Wijayanto, The synthesis and characterization of hydrogel chitosan alginate with the addition of plasticizer lauric acid for wound dressing application, J. Phys. Conf. Series, 853 (2017) 012042.

F. Gabriele, A. Donnadio, M. Casciola, R. Germani, N. Spreti, Ionic and covalent crosslinking in chitosan-succinic acid membranes: Effect on physicochemical properties, Carbohydr. Polym., 251 (2021) 1-9.

N. Reddy, Y. Yang, Citric acid cross-linking of starch films, Food Chem., 118 (2010) 702-711.

N. Thessrimuang, J. Prachayawarakorn, Characterization and properties of high amylose Mung bean starch biodegradable films cross-linked with malic acid or succinic acid, J. Polym. Environ., 27(2) (2018) 1-11.

J.R. Rodrı´guez-Nu´n˜ez, T.J. Madera-Santana, D I. Sanchez-Machado, J. Lopez-Cervantes, H.S. Valdez, Chitosan/hydrophilic plasticizer-based films: Preparation, physicochemical and antimicrobial properties, J. Polymer Environ., 22 (2014) 41-51.

H. Chen, C. Wu, X. Feng, M. He, X. Zhua, , F. Teng, Effects of two fatty acids on soy protein isolate/sodium alginate edible films: Structures and properties, LWT-Food Sci. Technol., 159 (2022) 1-10.

How to Cite
Mutasher, S., & Al-Lami, H. (2022). Preparation of chitosan films plasticized by lauric and maleic acids. Analytical Methods in Environmental Chemistry Journal, 5(04), 43-54.
Original Article