Surface-engineered TiO2 nanoparticles incorporated Chitosan polymer membrane for seawater desalination: Fabrication, characterization, and performance evaluation
Volume 6, Issue 04, Pages xxx-xxx, Dec 2023 *** Field: Analytical Environmental Chemistry
Abstract
The effect of surface coating against RO membrane over TiO2-NPs incorporated with chitosan (TiO2-NPs/chitosan) membrane was evaluated to obtain a simple method to fabricate RO membrane for enhanced performance on seawater desalination. The impact of surface coating on the chitosan membrane performance in seawater reverse osmosis (SWRO) was investigated by altering the mass of TiO2-NPs (0.25 g and 0.5 g) used for the surface coating RO membrane. TiO2-NPs were applied to the membranes using a surface coating technique and dried to create a sturdy polymer structure. The characteristic of fabricated membranes shows the function group reflects on organic compounds from /chitosan membranes polymer (–OH, -CH, C=O, C-O-C, -CH3, C-O, and NH2). In addition, TiO2-NPs are also expressed in the wavenumber range of 850-500 cm-1, which characterizes the presence of Ti-O-Ti bonds. Morphological and crystal analyses of TiO2-NPs incorporated in chitosan membrane show significantly smaller pores formed because TiO2-NPs are essential in the high permeability performance under the amorphous phase structure. Under the RO desalination process, the high performance of fabricated membranes was evaluated against water flux and salt rejection. Adding TiO2-NPs can affect the decrease in water flux value by 23 L m-2 h-1 and increase salt rejection by 52.94%.
References
P.H. Nienhuis, J. Coosen, W. Kiswara, Community structure and biomass distribution of seagrasses and macrofauna in the Flores Sea, Indonesia, Netherlands J. Sea Res., 23 (1989) 197–214. https://doi.org/10.1016/0077-7579(89)90014-8.
E. Hastuti, M.W. Wardiha, A study of brackish water membrane with ultrafiltration pretreatment in indonesia’s coastal area, J. Urban Environ. Eng., 6 (2012) 10–17. https://doi.org/10.4090/juee.2012.v6n1.010017.
S. Han, Y.-W. Rhee, S.-P. Kang, Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination, Desalination, 404 (2017) 132–137. https://doi.org/10.1016/j.desal.2016.11.016.
S. Timoori, Environmental Health: Evaluation of heavy metals pollution in Isfahan industrial zone from soils, well/eluent waters and waste water by microwave-electro-thermal atomic absorption spectrometry, Anal. Methods Environ. Chem. J., 2 (2019) 55–62. https://doi.org/10.24200/amecj.v2.i01.44.
B. Suhartawan, J. Haurissa, S.A. Rumawak, Lake Sentani Water Quality Index based on NSF-WQI as Raw Water for Drinking Water for Lake Sentani Coastal communities, Jayapura Regency, J. Syntax Admiration, 3 (2022) 1189–1204. https://doi.org/10.46799/jsa.v3i9.481.
K. Katsanou, H.K. Karapanagioti, Surface water and groundwater sources for drinking water, Appl. Adv. Oxid. Process. Drink. Water Treat., (2019) 1–19. https://doi.org/10.1007/698_2017_140.
S.H. Mutasher, H.S. Al-Lami, Preparation of chitosan films plasticized by lauric and maleic acids, Anal. Methods Environ. Chem. J., 5 (2022) 43–54. https://doi.org/10.24200/amecj.v5.i04.209.
Y. Cai, J. Wu, S.Q. Shi, J. Li, K.-H. Kim, Advances in desalination technology and its environmental and economic assessment, J. Clean. Prod., 397 (2023) 136498. https://doi.org/10.1016/j.jclepro.2023.136498.
A.M. Ghaithan, A. Mohammed, L. Hadidi, Assessment of integrating solar energy with reverse osmosis desalination, Sustain. Energy Technol. Assessments, 53 (2022) 102740. https://doi.org/10.1016/j.seta.2022.102740.
A. Hassanzadeh, B. Amirheidari, A. Salarifar, A. Asadipour, Y. Pourshojaei, Synthesis and identification of meta-(4-bromobenzyloxy) benzaldehyde thiosemicarbazone (MBBOTSC) as novel ligand for cadmium extraction by ultrasound assisted-dispersive-ionic liquid-liquid micro extraction method, Anal. Methods Environ. Chem. J., 4 (2021) 92–106. https://doi.org/10.24200/amecj.v4.i04.161.
A.B.D.N. Kurnia, R. Ismiati, A. Annisa, F. Finandia, N.N.A. Nissa, R.C. Dewi, Economic Evaluation Analysis of Nano-silica Ultrafiltration Membrane Production from Sand, Int. J. Energ., 3 (2018) 6–9. https://doi.org/10.47238/ijeca.v3i1.59.
A. Knebel, J. Caro, Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation, Nat. Nanotechnol., 17 (2022) 911–923. https://doi.org/10.1038/s41565-022-01168-3.
V. Vatanpour, M.E. Pasaoglu, H. Barzegar, O.O. Teber, R. Kaya, M. Bastug, A. Khataee, I. Koyuncu, Cellulose acetate in fabrication of polymeric membranes: A review, Chemosphere, 295 (2022) 133914. https://doi.org/10.1016/j.chemosphere.2022.133914.
I. Ounifi, Y. Guesmi, C. Ursino, R. Castro-Muñoz, H. Agougui, M. Jabli, A. Hafiane, A. Figoli, E. Ferjani, Synthesis and characterization of a thin-film composite nanofiltration membrane based on polyamide-cellulose acetate: application for water purification, J. Polym. Environ., 30 (2022) 707–718.
Y. Yamashita, T. Endo, Deterioration behavior of cellulose acetate films in acidic or basic aqueous solutions, J. Appl. Polym. Sci., 91 (2004) 3354–3361. https://doi.org/10.1002/app.13547.
Y. Yang, Z. Wang, Z. Song, D. Liu, J. Zhang, L. Guo, W. Fang, J. Jin, Thermal treated amidoxime modified polymer of intrinsic microporosity (AOPIM-1) membranes for high permselectivity reverse osmosis desalination, Desalination, 551 (2023) 116413. https://doi.org/10.1016/j.desal.2023.116413.
S. Yang, R. Tang, Y. Dai, T. Wang, Z. Zeng, L. Zhang, Fabrication of cellulose acetate membrane with advanced ultrafiltration performances and antibacterial properties by blending with HKUST-1@ LCNFs, Sep. Purif. Technol., 279 (2021) 119524. https://doi.org/10.1016/j.seppur.2021.119524.
S. Hasheminasab, J. Barzin, R. Dehghan, High-performance hemodialysis membrane: Influence of polyethylene glycol and polyvinylpyrrolidone in the polyethersulfone membrane, J. Membr. Sci. Res., 6 (2020) 438–448. https://doi.org/10.22079/JMSR.2020.128323.1391.
L. Qi, R. Liang, T. Jiang, W. Qin, Anti-fouling polymeric membrane ion-selective electrodes, TrAC Trends Anal. Chem., 150 (2022) 116572. https://doi.org/10.1016/j.trac.2022.116572.
M. Chaudhary, A. Maiti, Fe–Al–Mn@ chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: removal mechanisms and antibacterial behavior, J. Memb. Sci., 611 (2020) 118372. https://doi.org/10.1016/j.memsci.2020.118372.
P.S. Bakshi, D. Selvakumar, K. Kadirvelu, N.S. Kumar, Chitosan as an environment friendly biomaterial–a review on recent modifications and applications, Int. J. Biol. Macromol., 150 (2020) 1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113.
M. Nurdin, D. Wibowo, T. Azis, R.A. Safitri, M. Maulidiyah, A. Mahmud, F. Mustapa, R. Ruslan, A. Salim, L. Ode, Photoelectrocatalysis Response with Synthetic Mn–N–TiO2/Ti Electrode for Removal of Rhodamine B Dye, Surf. Eng. Appl. Electrochem., 58 (2022) 125–134. https://doi.org/10.3103/S1068375522020077.
D. Wibowo, M.Z. Muzakkar, M. Maulidiyah, M. Nurdin, S.K.M. Saad, A.A. Umar, Morphological Analysis of Ag Doped on TiO2/Ti Prepared via Anodizing and Thermal Oxidation Methods, Biointerface Res. Appl. Chem., 12 (2022) 1421–1437. https://doi.org/10.33263/BRIAC122.14211427.
M. Natsir, M. Maulidiyah, A. Ansharullah, Z. Arham, D. Wibowo, M. Nurdin, Natural Biopesticide Preparation As Antimicrobial Material Based on Lignin Photodegradation Using Mineral Ilmenite (FeoTio2), Int. Res. J. Pharm., 9 (2018) 170–174. https://doi.org/10.7897/2230-8407.096111.
M. Nurdin, N. Dali, I. Irwan, M. Maulidiyah, Z. Arham, R. Ruslan, B. Hamzah, S. Sarjuna, D. Wibowo, Selectivity Determination of Pb2+ Ion Based on TiO2-Ionophores BEK6 as Carbon Paste Electrode Composite, Anal. Bioanal. Electrochem., 10 (2018) 1538–1547. https://doi.org/-.
D. Wibowo, M.Z. Muzakkar, S.K.M. Saad, F. Mustapa, M. Maulidiyah, M. Nurdin, A.A. Umar, Enhanced visible light-driven photocatalytic degradation supported by Au-TiO2 coral-needle nanoparticles, J. Photochem. Photobiol. A Chem., 398 (2020) https://doi.org/10.1016/j.jphotochem.2020.112589.
D. Wibowo, F. Mustapa, S. Selviantori, M. Idris, A. Mahmud, M. Maulidiyah, M.Z. Muzakkar, A.A. Umar, M. Nurdin, CA/PEG/Chitosan membrane incorporated with TiO2 nanoparticles for strengthening and permselectivity membrane for reverse osmosis desalination, Environ. Nanotechnology, Monit. Manag., 20 (2023) 100848. https://doi.org/10.1016/j.enmm.2023.100848.
S. Chelbi, D. Djouadi, A. Chelouche, L. Hammiche, T. Touam, A. Doghmane, Effects of Ti-precursor concentration and annealing temperature on structural and morphological properties of TiO 2 nano-aerogels synthesized in supercritical ethanol, SN Appl. Sci., 2 (2020) 1–10. https://doi.org/10.1007/s42452-020-2633-3.
Y.-H. Chiao, A. Sengupta, S.-T. Chen, S.-H. Huang, C.-C. Hu, W.-S. Hung, Y. Chang, X. Qian, S.R. Wickramasinghe, K.-R. Lee, Zwitterion augmented polyamide membrane for improved forward osmosis performance with significant antifouling characteristics, Sep. Purif. Technol., 212 (2019) 316–325. https://doi.org/10.1016/j.seppur.2018.09.079.
P. Dietz, P.K. Hansma, O. Inacker, H.-D. Lehmann, K.-H. Herrmann, Surface pore structures of micro-and ultrafiltration membranes imaged with the atomic force microscope, J. Memb. Sci., 65 (1992) 101–111. https://doi.org/10.1016/0376-7388(92)87057-5.
M.H. Oo, L. Song, Effect of pH and ionic strength on boron removal by RO membranes, Desalination, 246 (2009) 605–612. https://doi.org/10.1016/j.desal.2008.06.025.
E.S. Mansor, H. Abdallah, A.M. Shaban, Development of TiO2/polyvinyl alcohol-cellulose acetate nanocomposite reverse osmosis membrane for groundwater-surface water interfaces purification, Mater. Sci. Eng. B, 289 (2023) 116222. https://doi.org/10.1016/j.mseb.2022.116222.
H. Jain, A.K. Verma, R. Dhupper, S. Wadhwa, M.C. Garg, Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection, Int. J. Environ. Sci. Technol., 19 (2022) 5387–5400. https://doi.org/10.1007/s13762-021-03415-x.
A.H. Konsowa, H.Z. AbdAllah, S. Nosier, M.G. Eloffy, Thin-film nanocomposite forward osmosis membrane for water desalination: synthesis, characterization and performance improvement, Water Qual. Res. J., 57 (2022) 72–90. https://doi.org/10.2166/wqrj.2022.034.
V. Vatanpour, S. Paziresh, S.A.N. Mehrabani, S. Feizpoor, A. Habibi-Yangjeh, I. Koyuncu, TiO2/CDs modified thin-film nanocomposite polyamide membrane for simultaneous enhancement of antifouling and chlorine-resistance performance, Desalination, 525 (2022) 115506. https://doi.org/10.1016/j.desal.2021.115506.

Copyright (c) 2023 Analytical Methods in Environmental Chemistry Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
JOURNAL PUBLISHING AGREEMENT
PLEASE PROVIDE US THE FOLLOWING INFORMATION,
Article entitled:
Corresponding author:
To be published in the journal:
Your Status
I am the sole author of the manuscript
- I am an Iranian government employee.
- I am a European government employee
- I am a Asian government
- None of the above
I am one author signing on behalf of all co-authors of the manuscript
- I am an Iranian government employee.
- I am a European government employee
- I am a Asian government
- None of the above
Please tick the above blanks (as appropriate), review the Journal Publishing Agreement, and then sign and date the document in black ink.
Published Journal Article: the author may share a link to the formal publication through the relevant DOI. Additionally theses and dissertations which contain embedded Published Journal Articles as part of the formal submission may be hosted publicly by the awarding institution with a link to the formal publication through the relevant DOI. Any other sharing of Published Journal Articles is by agreement with the publisher only.
Signed: ______________________________________ Name printed: ___________________________________________
Title and Company (if employer representative): _______________________Date: __________________________________