Removal of ethylene bisdithiocarbamate fungicides in wastewater and agricultural runoff by zinc oxide nanoparticles before analysis by HPLC and UV-Vis spectroscopy

Volume 6, Issue 04, Pages 93-106, Dec 2023 *** Field: Analytical Environmental Chemistry

  • Mahadi Danjuma Sani, (corresponding ) Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, A.P. India
  • Nagendra Kumar V. D. Abbaraju Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, A.P. India
  • Venugopal V. S. Nutulapati Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, A.P. India
  • Nura Kura Umar Department of Environmental Science, Federal University Dutse, Jigawa State, Nigeria
Keywords: Removal, Photocatalytic degradation, Zinc Oxide, Ethylene bisdithiocarbamate, High-performance liquid chromatography, UV-Vis spectroscopy

Abstract

This study developed an applied method based on the degradation to remove ethylene bisdithiocarbamate (EBDC) fungicides from wastewater and agricultural runoff by zinc oxide nanoparticles (ZnONPs). The synthesized ZnONPs were characterized using XRD for material crystallinity, scanning electron microscope (SEM) and particle size analysis (PSA) for surface structure, morphology and particle size (nm), respectively. The energy-dispersive X-ray spectroscopy  (EDX) spectra confirmed the presence of zinc and showed that the synthesized zinc oxide nanoparticles were pure. Determination of the adsorption and photocatalytic degradation of Mancozeb (MCZ) fungicides based on ZnONPs was performed. Different amounts of ZnONPs were loaded into an MCZ fungicide solution in different concentrations. High-performance liquid chromatography (HPLC) and UV-Vis spectroscopy were used to determine the dithiocarbamate residue and the degradation efficiency of the synthesized particles. The particle size distribution of the synthesized ZnONPs was found to be in the range of 50-95 nm. At optimum conditions, with a ZnONPs dosage of 10 mg, (MCZ) fungicide concentration of 9.37 mg L-1, and a duration of 60 minutes, the degradation efficiency was surpassed at more than 95%. Additionally, the nanoparticles demonstrated excellent reusability and maintained efficient activity for up to three cycles. 

Author Biographies

Nagendra Kumar V. D. Abbaraju, Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, A.P. India

Associate Professor in the Department of Environmental Science, GITAM University.

Venugopal V. S. Nutulapati, Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, A.P. India

Professor, Department of Chemistry, GITAM University

Nura Kura Umar, Department of Environmental Science, Federal University Dutse, Jigawa State, Nigeria

Associate Professor and Head of Department, Environmental Sciences, Federal University Dutse.

References

R. Garg, R. Gupta, N. Singh, A. Bansal, Eliminating pesticide quinalphos from surface waters using synthesized GO-ZnO nanoflowers: Characterization, degradation pathways and kinetic study, Chemosphere, 286 (2022) 131837. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131837.

C. M. Martínez-Escudero, I. Garrido, P. Flores, P. Hellín, F. Contreras-López, J. Fenoll, Remediation of triazole, anilinopyrimidine, strobilurin and neonicotinoid pesticides in polluted soil using ozonation and solarization, J. Environ. Manage., 310 (2022) 114781. https://doi.org/10.1016/J.JENVMAN.2022.114781.

F. Hüesker, R. Lepenies, Why does pesticide pollution in water persist?, Environ. Sci. Policy, 128 (2022)185–193. https://doi.org/10.1016/J.ENVSCI.2021.11.016.

A. Alsendi, A. A. Kareem, M. Havasi, G. Golmohammadi, A study on the toxicity and sublethal concentrations of three insecticides on the population dynamics of green lacewing chrysoperla carnea stephens, Arab J. Plant Prot., 41 (2023) 28-36. https://doi.org/10.22268/AJPP-41.1.028036.

E. Gök, E. Deveci, Histopathological, immunohistochemical and biochemical alterations in liver tissue after fungicide-mancozeb exposures in Wistar albino rats, Acta Cirúrgica Bras., 37 (2022) e370404. https://doi.org/10.1590/ACB370404.

S. Kumar, T. R. Baggi, T. Al-Zughaibi, Forensic toxicological and analytical aspects of carbamate poisoning-A review, J. Forensic Leg. Med., 92 (2022)102450. https://doi.org/10.1016/J.JFLM.2022.102450.

Y. Bai, X. Ruan, J. P. van der Hoek, Residues of organochlorine pesticides (OCPs) in aquatic environment and risk assessment along Shaying River, China, Environ. Geochem. Health, 40 (2018) 2525–2538. https://doi.org/ 10.1007/S10653-018-0117-9/TABLES/5.

J. S. Aprioku, B. Pharm, A. M. Amamina, A. Nnabuenyi, Mancozeb-induced hepatotoxicity: protective role of curcumin in rat animal model, Toxicol. Res. (Camb), 12 (2023) 107–116. https://doi.org/10.1093/TOXRES/TFAC085.

O. J. Stephenson, L. D. Trombetta, Comparative effects of Mancozeb and Disulfiram-induced striated muscle myopathies in Long-Evans rats, Environ. Toxicol. Pharmacol., 74, (2020) 103300. https://doi.org/10.1016/J.ETAP.2019.103300.

F. Bano, B. Mohanty, Thyroid disrupting pesticides mancozeb and fipronil in mixture caused oxidative damage and genotoxicity in lymphoid organs of mice, Environ. Toxicol. Pharmacol., 79 (2020)103408. https://doi.org/10.1016/J.ETAP.2020.103408.

B. R. Kistinger, D. Hardej, The ethylene bisdithiocarbamate fungicides mancozeb and nabam alter essential metal levels in liver and kidney and glutathione enzyme activity in liver of Sprague-Dawley rats, Environ. Toxicol. Pharmacol., 92 (2022) 103849. https://doi.org/10.1016/J.ETAP.2022.103849.

N. Atmaca, Effects of mancozeb, metalaxyl and tebuconazole on steroid production by bovine luteal cells in vitro, Environ. Toxicol. Pharmacol., 59 (2018) 114–118. https://doi.org/10.1016/J.ETAP.2018.03.009.

J. Bao, Y. Zhang, R. Wen, L. Zhang, X. Wang, Low level of mancozeb exposure affects ovary in mice, Ecotoxicol. Environ. Saf., 239 (2022)113670. https://doi.org/10.1016/J.ECOENV.2022.113670.

Y. Morales-Ovalles, Developmental exposure to mancozeb induced neurochemical and morphological alterations in adult male mouse hypothalamus, Environ. Toxicol. Pharmacol., 64 (2018)139–146. https://doi.org/10.1016/J.ETAP.2018.10.004.

M. A. Saraiva, Mancozeb impairs mitochondrial and bioenergetic activity in Drosophila melanogaster, Heliyon, 7 (2021) e06007. https://doi.org/10.1016/J.HELIYON.2021.E06007.

E. E. Elsharkawy, M. A. El-Nasser, A. A. Bakheet, Mancozeb impaired male fertility in rabbits with trials of glutathione detoxification, Regul. Toxicol. Pharmacol., 105 (2019) 86–98. https://doi.org/10.1016/J.YRTPH.2019.04.012.

A. Harrison Brody, E. Chou, J. M. Gray, N. J. Pokyrwka, K. M. Raley-Susman, Mancozeb-induced behavioral deficits precede structural neural degeneration, Neurotoxicol., 34 (2013) 74–81. https://doi.org/10.1016/J.NEURO.2012.10.007.

S. H. Gebre, M. G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview, SN Appl. Sci., 1 (2019) 1–28. https://doi.org/10.1007/S42452-019-0931-4/TABLES/7.

E. Hannachi, Synthesis, characterization, and evaluation of the photocatalytic properties of zinc oxide co-doped with lanthanides elements, J. Phys. Chem. Solids, 170 (2022) 110910. https://doi.org/10.1016/J.JPCS.2022.110910.

P. Akhter, Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites, Mol. Catal., 535 (2023) 112896. https://doi.org/10.1016/J.MCAT.2022.112896.

R. M. Abdelhameed, O. M. Darwesh, M. El-Shahat, Titanium-based metal-organic framework capsulated with magnetic nanoparticles: Antimicrobial and photocatalytic degradation of pesticides, Microporous Mesoporous Mater., 354 (2023)112543. https://doi.org/10.1016/J.MICROMESO.2023.112543.

L. Zhang, Silicon quantum dots and MOFs hybrid multicolor fluorescent nanosensor for ultrasensitive and visual intelligent sensing of tetracycline, Coll. Surf. A Physicochem. Eng. Asp., 652 (2022) 129853. https://doi.org/10.1016/J.COLSURFA.2022.129853.

M. Samadifar, Y. Yamini, M. M. Khataei, Magnetically solid-phase extraction of diazinon and chlorpyrifos pesticides in vegetables using covalent triazine-based framework incorporated chitosan nanocomposite, J. Food Compos. Anal., 118 (2023) 105158. https://doi.org/10.1016/J.JFCA.2023.105158.

S. Amiri, M. Anbia, Enhanced degradation of diazinon in aqueous solution using C-TiO2/g-C3N4 nanocomposite under visible light: Synthesis, characterization, kinetics, and mechanism studies, Mater. Res. Bull., 16 5(2023)112289. https://doi.org/10.1016/J.materresbull.2023.112289.

M. Arjomandi, H. Shirkhanloo, A Review: Analytical methods for heavy metals determination in environment and human samples, Anal. Methods Environ. Chem. J., 2 (2019) 97–126. https://doi.org/10.24200/amecj.v2.i03.73.

S. Golkhah, H. Zavvar Mousavi, Removal of Pb (II) and Cu (II) Ions from‎ aqueous solutions by cadmium sulfide‎ Nanoparticles, Int. J. Nanosci. Nanotechnol. 13 (2017) 105-117. https://www.ijnnonline.net/article_25609.html

A. Ali, S. Ahmed, Green Synthesis of Metal, Metal Oxide Nanoparticles, and Their Various Applications, Springer Book, pages 1-45, 2018. https://doi.org/10.1007/978-3-319-48281-1_115-1.

M. M. Asl, N. Mansouri, S. A. R. H. S. Mirzahosseini, F. Atabi, Functionalized graphene oxide with bismuth and titanium oxide nanoparticles for efficiently removing formaldehyde from the air by photocatalytic degradation–adsorption process, J. Anal. Test., (2023) 1–15. https://doi.org/10.1007/s41664-023-00272-0

A. Faghihi-Zarandi, J. Rakhtshah, B. Bahrami Yarahmadi, A rapid removal of xylene vapor from environmental air based on bismuth oxide coupled to heterogeneous graphene/ graphene oxide by UV photo-catalectic degradation-adsorption procedure, J. Environ. Chem. Eng., 8 (2020)104193. https://doi.org/10.1016/j.jece.2020.104193

R. R. Wary, S. Baglari, D. Brahma, U. K. Gautam, P. Kalita, M. B. Baruah, Synthesis, characterization, and photocatalytic activity of ZnO nanoparticles using water extract of waste coconut husk, Environ. Sci. Pollut. Res., 29 (2022) 42837–42848. https://doi.org/10.1007/s11356-022-18832-9

A. M. Tatagar, J. I. Moodi, J. C. Abbar, M. A. Phaniband, Photocatalytic activity and anti-microbial application of synthesized Zinc oxide nanoparticles (ZnO Nps) towards remediation of hospital waste water (HWW), Mater. Today Proc., 49 (2022) 699–702. https://doi.org/10.1016/j.matpr.2021.05.176

V. N. Rao, N. V. S. Venu Gopal, T. B. Patrudu, Zinc oxide nanoparticles catalytic activity for the degradation of quinclorac herbicide residues in water, Bull. Monum., 21(2020)161. http://bulletinmonumental.com/

Y. Li, K. Li, M. Li, M. Ge, Zinc-doped ferrite nanoparticles as magnetic recyclable catalysts for scale-up glycolysis of poly(ethylene terephthalate) wastes, Adv. Powder Technol., 33 (2022)103444. https://doi.org/10.1016/J.APT.2022.103444.

B. Sowjanya, U. Sirisha, A. Suhasini Juttuka, S. Matla, P. King, M. Vangalapati, Synthesis and characterization of zinc oxide nanoparticles: It’s application for the removal of alizarin red S dye, Mater. Today Proc., 62 (2022) 3968-3972. https://doi.org/10.1016/j.matpr.2022.04.576

S. Rajendrachari, P. Taslimi, A. C. Karaoglanli, O. Uzun, E. Alp, G. K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method, Arab. J. Chem., 14 (2021)103180. https://doi.org/10.1016/J.ARABJC.2021.103180.

E. Alizadeh, H. Baseri, Catalytic degradation of Amlodipine Besylate using ZnO, Cu doped ZnO, and Fe doped ZnO nanoparticles from an aqueous solution: Investigating the effect of different parameters on degradation efficiency, Solid State Sci., 78 (2018) 86–94. https://doi.org/10.1016/j.solidstatesciences.2018.02.010

K. Rambabu, G. Bharath, F. Banat, P. L. Show, Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment, J. Hazard. Mater., 402 (2021) 123560. https://doi.org/10.1016/j.jhazmat.2020.123560.

P. Nagaraju, Y. Vijayakumar, M. V. Ramana Reddy, Room-temperature BTEX sensing characterization of nanostructured ZnO thin films, J. Asian Ceram. Soc., 7 (2019) 141–146. https://doi.org/10.1080/21870764.2019.1579401.

J. Al-Sabahi, T. Bora, M. Al-Abri, J. Dutta, Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods, PLOS One, 12 (2017) e0189276. https://doi.org/10.1371/journal.pone.0189276

S. M. Nampoothiri, V. Chandran, E. M. Mohammed, R. Francis, Preparation and Characterization of Zinc Oxide(ZnO) Nanoparticles via Co-precipitation Method, Int. J. Sci. Res. Pap. Multidiscip. Stud., 5,(2019) 56–61. https://www.isroset.org/pdf_paper_view.php?paper_id=1447&8-IJSRMS-02507.pdf

Note: Rs1-RS5 showed in Supplementary Material (ESM)

[RS1] A. Layek, A generalized three-stage mechanism of ZnO nanoparticle formation in homogeneous liquid medium, 2012. https://doi.org/10.1021/jp211613b.

[RS2] V. B. Raghavendra, S. Shankar, M. Govindappa, A. Pugazhendhi, M. Sharma, S. C. Nayaka, Green synthesis of zinc oxide nanoparticles (ZnO NPs) for effective degradation of dye, polyethylene and antibacterial performance in waste water treatment, J. Inorg. Organomet. Polym. Mater., 32 (2022) 614–630. https://doi.org/10.1007/S10904-021-02142-7/FIGURES/13.

[RS3] H. Adabavazeh, A. Saljooqi, T. Shamspur, A. Mostafavi, Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light, Polyhedron, 198 (2021) 115058. doi: https://doi.org/10.1016/J.POLY.2021.115058.

[RS4] N. Premalatha, L. Rose Miranda, Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda- cyhalothrin pesticide in visible light: A study of reaction kinetics and intermediates, J. Environ. Manage., 246 (2019) 259–266. https://doi.org/ 10.1016/J.JENVMAN.2019.05.155.

[RS5] S. Farahbakhsh, R. Parvari, A. Zare, H. Mahdizadeh, V. Faizi, A. Saljooqi, Preparation of biochar based on grapefruit peel and magnetite decorated with cadmium sulfide nanoparticles for photocatalytic degradation of chlorpyrifos, Diam. Relat. Mater., 126 (2022) 109130. https://doi.org/10.1016/J.DIAMOND.2022.109130.

[RS6] F. Alvarado-Hidalgo, R. Starbird-Perez, Electrochemical characterization of mancozeb degradation for wastewater treatment using a sensor based on poly, Polym. Artic., 11(2019) 1449. https://doi.org/10.3390/polym11091449

Published
2023-12-30
How to Cite
Danjuma Sani, M., Abbaraju, N., Nutulapati, V. V. S., & Umar, N. (2023). Removal of ethylene bisdithiocarbamate fungicides in wastewater and agricultural runoff by zinc oxide nanoparticles before analysis by HPLC and UV-Vis spectroscopy. Analytical Methods in Environmental Chemistry Journal, 6(04), 93-106. https://doi.org/10.24200/amecj.v6.i04.251
Section
Original Article