Removal of manganese (II) in water samples by the aeration-filtration process and determination based on 5-Br-PADAP ligand by cathodic stripping voltammetry

Volume 6, Issue 04, Pages 76-92, Dec 2023 *** Field: Analytical Environmental Chemistry

  • Abdoulkadri Ayouba Mahamane, Corresponding Author, aLaboratoire Matériaux, Eau et Environnement, Département de Chimie, Faculté des Sciences et Techniques, Université Abdou Moumouni, Niamey, Niger
  • Boubié Guel Laboratoire de Chimie Moléculaire et des Matériaux, Équipe Chimie Physique et Electrochimie, Département de Chimie, Université de Ouagadougou 03 BP 7021 Ouagadougou 03 Burkina Faso
  • Paul-Louis Fabre caboratoire de Génie Chimique UMR CNRS 5503 Bât.2R1 – 118 route de Narbonne 31062 Toulouse Cedex 09, France
Keywords: Manganese, Removal, 5-Br-PADAP Ligand, Aeration-filtration, Cathodic Stripping Voltammetry

Abstract

In this study, manganese (Mn II) was determined in aqueous media by an electrochemical method, and its removal was evaluated using the aeration-filtration process (AFP). An electrochemical sensor based on carbon paste (EPC) modified with the 5-Br-PADAP ligand was used to measure Mn (II) in aqueous media. Through the optimization of analytical parameters in cathodic stripping voltammetry (CSV), real boreholes and well water samples could be analyzed for manganese content. The optimum parameters such as preconcentration potential (1100 mV), preconcentration time (240s), 5-Br-PADAP ligand concentration (20 µmol L-1), and electrode rotation speed during pre-concentration (1000 rpm) were studied and optimized. The detection limit (LOD) is estimated at 3 ´10-7 mol L-1 with a relative standard deviation (RSD) of 3.36%. The real samples showed that some water points have more concentration than the standard. A simple, effective, inexpensive, and rural-friendly method was used for treating manganese-rich water. Following the aeration phase, the sand and gravel column was filtered to remove manganese (II) from the water. The removal efficiency of Mn was obtained at a rate of 74.8- 84.5% and more than 95% after two hours of aeration and 1 hour at pH 8 for real samples.

References

J. Rodier, B. Legube, N. Merlet, B. Regis, Natural waters, wastewater, seawater: Water analysis (L'analyse de l'eau), Dunod, 10th edition, 2016. https://www.dunod.com/sciences-techniques/analyse-eau-eaux-naturelles-eaux-residuaires-eau-mer-0

G.D. Lanciné, A.J. Touchard, K. Bamory, K. Fernand, K. Kouadio, S. Issiaka, Removal of iron and manganese by aeration-filtration of borehole water in rural areas in developing countries, the case of the Tassialé region (southern Côte d'Ivoire), Eur. J. Sci. Res., 19 (2008) 558-567. http://www.eurojournals.com/ejsr.htm

A.A. Mahamane, G. Boubié, Physico-chemical characterizations of groundwater in the locality of Yamtenga (Burkina Faso), Int. J. Biol. Chem. Sci., 9 (2015) 517-533.

https://doi.org/10.4314/ijbcs.v9i1.44

R. Mogwasi, M. Eric, N. Obed, Inductively coupled plasma-mass spectrometry versus flame atomic absorption spectrophotometry for the analysis of Fe, Cu, Zn, Mn, and Cr in medicinal plants: a comparison study, Adv. Transl. Med., 2 (2023) 1-15. https://doi.org/10.55976/atm.220231321-15

R.D. Crapnell, E.B. Craig, Electroanalytical overview: The determination of manganese, Sens. Actuators Rep., 4 (2022) 100110. https://doi.org/10.1016/j.snr.2022.100110

S. Sima, S. Cinti, Anodic and cathodic stripping voltammetry for metals sensing, Electrochem., 17 (2023) 55-72. https://doi.org/10.1039/9781839169366-00055

Y. Yang, Y. Huang, H. Luo, J. Zao, J. Bi, G. Wu, Ion interference and elimination in electrochemical detection of heavy metals using anodic stripping voltammetry, J. Electrochem. Soc., 170 (2023) 057507. https://doi.org/10.1149/1945-7111/acd1ba

I. Dominguez, M.C. Jesus, D.V. Ignacio, D.M. Juan, S. Radka, S. Petr, S. Vitezslav, Ś. Mateusz, R. M. Ignacio, Electrochemical lossy mode resonance for detection of manganese ions, Sens. Actuators B Chem., 394 (2023) 134446. https://doi.org/10.1016/j.snb.2023.134446

G. Ringgit, S. Shafiquzzaman, S. Surayani L. Mohammad, Synthesized f-MWCNTs/CS/PB for determination of manganese (Mn2+) in drinking water, Monatsh. Chem., 154 (2023) 191-203. https://doi.org/10.1007/s00706-022-03026-3

E. Boselli, Z. Wu, A. Friedman, C.B. Henn, L. Papautsky, Validation of electrochemical sensor for determination of manganese in drinking water, Environ. Sci. Technol., 55 (2021) 7501-7509. https://doi.org/10.1021/acs.est.0c05929

C. Mariame, Y.N. Alfred, B. Drissa, G.M. El Amine, Y.M. Issa, E.R. Mama, Assessment of dissolved manganese (II) pollution in river water by differential pulse cathodic stripping voltammetry: A case study of River Boubo, Côte d'Ivoire, Afr. J. Pure Appl. Chem., 7 (2013) 318-324. https://doi.org/10.5897/AJPAC2013.0516

H.S. El-Desoky, M.I. Iqbal, M.G. Mohamed, Stripping voltammetry method for determination of manganese as complex with oxine at the carbon paste electrode with and without modification with montmorillonite clay, J. Solid State Electrochem., 17 (2013) 3153-3167. https://doi.org/10.1007/s10008-013-2204-2

E. M Ghoneim, Simultaneous determination of Mn (II), Cu (II) and Fe (III) as 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode, Talanta, 82 (2010) 646-652. https://doi.org/10.1016/j.talanta.2010.05.025

A.A. Mahamane, C. Despas, R. Adamou, A. Walcarius, Carbon paste electrode modified with 5-Br-PADAP as a new electrochemical sensor for the detection of inorganic mercury (II), J. Mater. Environ. Sci., 13 (2022) 54-69. http://www.jmaterenvironsci.com

T. Chu, M. Cheng, S. Hou, Y. Yang, Modified graphite paper treated by anionic intercalation for manganese removal via electrochemical deposition in water treatment, J. Ind. Eng. Chem., 120 (2023) 504-513.https://doi.org/10.1016/j.jiec.2023.01.002

S.M. Safwat, N.Y. Mohamed, M.M. El-Seddik, Performance evaluation and life cycle assessment of electrocoagulation process for manganese removal from wastewater using titanium electrodes. J. Environ. Manage., 328 (2023)116967. https://doi.org/10.1016/j.jenvman.2022.116967

P. Ntakiyiruta, P.C. Mpawenayo, D. Rucakumugufi, P. Bigumandondera, T. Ndikumana, J.L. Vasel, Removal of iron and manganese by aeration and coagulation-flocculation in borehole water from the town of Rumonge (Burundi), J. Mater. Environ. Sci., 14 (2023) 141-152. http://www.jmaterenvironsci.com

K.L. Dishman, Sieving in particle size analysis, Encyclopedia of Analytical Chemistry application, theory, and instrumentation, Wiley publisher, 2006. https://doi.org/10.1002/9780470027318.a1514

P. Charles, Catalytic removal of iron and manganese for the production of drinking water, water technologies drinking water supply, Suez Environnement, 2006. https://www.eurochlore.fr/wp-content/uploads/2016/12/Rapport_06AEP07.pdf

M. Gharous, L. Bounab, F.J. Pereira, M. Choukairi, R. López, A.J. Aller, Electrochemical kinetics and detection of paracetamol by stevensite-modified carbon paste electrode in biological fluids and pharmaceutical formulations, Int. J. Mol. Sci., 24 (2023) 11269. https://doi.org/10.3390/ijms241411269

A.A. Mahamane, B. Guel, P.L. Fabre, Electrochemical behavior of iron (II) at a nafion-1, 10-phenanthroline-modified carbon paste electrode: Assessing the correlation between Preconcentration potential, surface morphology, and impedance measurements, Challenge Adv. Chem. Sci., 2 (2021) 52–71.https://doi.org/10.9734/bpi/cacs/v2/2419F

S. A Leau, C. Lete, C. Matei, S. Lupu, Electrochemical sensing platform based on metal nanoparticles for epinephrine and serotonin, Biosens., 13 (2023) 781. https://doi.org/10.3390/bios13080781

C.M. Welch, C.E. Banks, Š. Komorsky-Lovrić, R.G. Compton, Electroanalysis of trace manganese via cathodic stripping voltammetry: exploration of edge plane pyrolytic graphite electrodes for environmental analysis, Croat. Chem. Acta, 79 (2006) 27–32. https://core.ac.uk/download/pdf/14377079.pdf

B. Rezaei, M. Ghiaci, M.E. Sedaghat, A selective modified bentonite–porphyrin carbon paste electrode for determination of Mn(II) by using anodic stripping voltammetry, Sens. Actuators B, 131 (2008) 439–447. https://doi.org/10.1016/j.snb.2007.12.017

S. B. Khoo, M. K. Soh, Q. Cai, M. R. Khan, S. X. Guo, Differential pulse cathodic stripping voltammetric determination of manganese (II) and manganese (VII) at the 1-(2-pyridylazo)-2-naphthol-modified carbon paste electrode, Electroanalysis, 9 (1997) 45–51. https://doi.org/10.1002/elan.1140090111

M. Aghaie, M. Giahi, M. Zawari, Manganese(II) ion-selective membrane electrode based on N-(2-picolinamido ethyl)-picolinamide as neutral carrier, Bull. Korean Chem. Soc., 31 (2010) 2980–2984. https://doi.org/10.5012/bkcs.2010.31.10.2980

S. Sharma, A. Jaiswal, K.N. Uttam, Synthesis of sensitive and robust lignin capped silver nanoparticles for the determination of cobalt(II), chromium(III), and manganese(II) ions by colorimetry and manganese(II) ions by surface-enhanced raman scattering (SERS) in aqueous media, Anal. Lett., 54 (2021) 2051-2069. https://doi.org/10.1080/00032719.2020.1837855

J. Rakhtshah, M. Dehghani Mobarake, Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes, Food Chem., 389 (2022) 133124. https://doi.org/10.1016/j.foodchem.2022.133124

A. Khaligh, H.Z. Mousavi, A. Rashidi, Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples, Microchem. J., 124 (2016) 637–645. https://doi.org/10.1016/j.microc.2015.10.008

D. Citak, M. Tuzen, M. Soylak, Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation–atomic absorption spectrometry combination, J. Hazard. Mater., 173 (2010) 773–777. https://doi.org/10.1016/j.jhazmat.2009.09.004

S. Golkhah, H. Zavvar Mousavi, Removal of Pb (II) and Cu (II) Ions from‎ aqueous solutions by cadmium sulfide‎ Nanoparticles, Int. J. Nanosci. Nanotechnol., 13 (2017) 105-117. https://www.ijnnonline.net/article_25609.html

S. Kouzbour, N. El Azher, B. Gourich, F. Gros, C. Vial, Y. Stiriba, Removal of manganese (II) from drinking water by aeration process using an airlift reactor, J. Water Process. Eng., 16 (2017) 233–239.https://doi.org/10.1016/j.jwpe.2017.01.010

L. Schamphelaire, R. Korneel, N. Boon, W. Verstraete, P. Boekx, Minireview: The potential of enhanced manganese redox cycling for sediment oxidation, Geomicrobiol. J., 24 (2007) 547-558.https://doi.org/10.1080/01490450701670137

S. Jerroumi, M. Amarine, B. Gourich, Technological trends in manganese removal from groundwater: A review, J. Water Process. Eng., 56 (2023) 104365. https://doi.org/10.1016/j.jwpe.2023.104365

K. Fialova, M. Motlochova, L. Cermakova, K. Novotna, J. Bacova, T. Rousar, M. Pivokonsky, Removal of manganese by adsorption onto newly synthesized TiO2-based adsorbent during drinking water treatment, Environ. Tech., 44 (2023) 1322-1333. https://doi.org/10.1080/09593330.2021.2000042

L.H. Cheng, Z.Z. Xiong, S. Cai, D.W. Li, X.H. Xu, Aeration-manganese sand filter-ultrafiltration to remove iron and manganese from water: Oxidation effect and fouling behavior of manganese sand coated film, J. Water Process. Eng., 38 (2020) 10162. https://doi.org/10.1016/j.jwpe.2020.101621

J.J. Walkowiak, Z. Dymaczewski, A.S. Janiaczyk, A.B. Nowicka, M. Szybowicz, Efficiency of Mn removal of different filtration materials for groundwater treatment linking chemical and physical properties, Water, 9 (2017) 498. https://doi.org/10.3390/w9070498

H.M. El-Naggar, Development of low-cost technology for the removal of iron and manganese from groundwater in Siwa Oasis, J. Egypt. Public Health Assoc., 85 (2010). 169-188. https://pubmed.ncbi.nlm.nih.gov/21244816/

L.C. Casalini, A. Piazza, F. Masotti, V. A. Pacini, G. Sanguinetti, J. Ottado, N. Gottig, Manganese removal efficiencies and bacterial community profiles in non-bioaugmented and in bioaugmented sand filters exposed to different temperatures, J. Water Process. Eng., 36 (2020) 101261.https://doi.org/10.1016/j.jwpe.2020.101261

A. El Shahawy, M.F. Mubarak, M. El Shafie, H.M. Abdulla, Adsorption of Mn (II) ions from wastewater using an AgNPs/GO/chitosan nanocomposite material, RSC Adv., 12 (2022) 29385-29398. https://doi.org/10.1039/D2RA04693H

Published
2023-12-28
How to Cite
Ayouba Mahamane, A., Guel, B., & Fabre, P.-L. (2023). Removal of manganese (II) in water samples by the aeration-filtration process and determination based on 5-Br-PADAP ligand by cathodic stripping voltammetry. Analytical Methods in Environmental Chemistry Journal, 6(04), 76-92. https://doi.org/10.24200/amecj.v6.i04.313
Section
Original Article