Colorimetric and Fluorometric detection of arsenic: arsenate and arsenite

Volume 6, Issue 01, Pages 29-57, March 2023 *** Field: Review Article: Analytical Method in Environmental Chemistry

  • Madhawa Nawarathne Postgraduate Institute of Science, University of Peradeniya, Sri Lanka
  • Ruvini Weerasinghe Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka
  • Chathuranga Dharmarathne, Corresponding Author, Department of biological science, Sydney, Australia
Keywords: Arsenate, Arsenite, Colorimetric, Fluorometric, Nanoparticles

Abstract

Arsenic is a highly toxic metalloid that forms different chemical states in nature, including arsenate and arsenite, as common inorganic forms. Exposure to arsenic may cause adverse effects on human health and the environment. Therefore, the detection of arsenic is critical. Exploring new approaches with low detection ranges and high sensitivity is crucial. This review paper consists of optical methods, including colorimetric and fluorometric methods, which detect arsenite and arsenate. Initially proposed colorimetric approaches such as the Gutzeit and molybdenum blue method can easily to use. However, the production of toxic substances limits their applications. Later, structurally modified molecules, nanoparticle-based assays, and their modifications are used for arsenic detection. Fluorometric methods also have noticeable attention to arsenic detection. Fluorescent approaches reported in this paper are based on semiconductor nanomaterials, other nanomaterials, and their modifications, etc. In addition, arsenate's catalytic and inhibitory activity on enzyme activity can be used to detect arsenic through colorimetric and fluorometric methods. This review highlighted the advantages, disadvantages, comparisons, and uses of colorimetric and fluorometric methods in detecting arsenite and arsenate.

References

M. M. Bradly, L. M. Siperko, M. D. Porter, Colorimetric-solid phase extraction method for trace level determination of arsenite in water, Talanta, 86 (2011) 64-70. https://dx.doi.org/10.1016/j.talanta.2011.08.004

X. Tian, L. Chen, Y. Li, C. Yang, Y. Nie, C. Zohou, Y. Wang, Design and synthesis of a molecule with aggregation-induced emission effects and its application in the detection of arsenite in groundwater, J. Mater. Chem. C, 5 (2017) 3669-3672. https://doi.org/10.1039/C7TC00363C

P. K. Sasgupta, H. Huang, G. Zhang, G. P. Cobb, Photometric measurement of trace As(III) and As(V) in drinking water, Talanta, 58 (2002) 153-164. https://doi.org/10.1016/S0039-9140(02)00264-3

L. R. Lado, G. Sun, M. Berg, Q. Zhan, H. Xue, Q. Zheng, A. Johmson, Ground water arsenic contamination throughout China, Sci., 341 (2013) 866-868, https://dx.doi.org/10.1126/science.1237484

T. Agusa, P. T. K. Trang, V. M. Lan, D. H. Anb, S. Tanabe, P. H. Viet, M. Berg, Human exposure to arsenic from drinking water in Vietnam, Sci. Total Environ., 48 (2013) 15348-15356, https://dx.doi.org/10. 1016/j.scitotenv.2013.10.039

P. N. Williams, A. Roab, J. Feldmann, A. A. Mehary, Market basket survey shows elevated levels of As in south central U.S. processed rice compared to California: Consequences for human dietary exposure, Environ. Sci. Technol., (2007) 2178–2183. https://dx.doi.org/10. 1016/j.taap.2006.04.004

Q. Zhang, H. Minami, S. Inoue, I. Atsuyn, Differential determination of trace amounts of arsenic(III) and arsenic(V) in seawater by solid sampling atomic absorption spectrometry after preconcentration by coprecipitation with a nickel–pyrrolidine dithiocarbamate complex, Anal. Chim. Acta, 15 (2004) 99-105. https://doi.org/10.1016/j.aca.2003.11.053

Y. Cai, Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry, TrAC Trends Anal. Chem., 19 (2000) 62-66. https://doi.org/10.1016/S0165-9936(99)00180-6

K. Jitmanee, M. Oshima, S. Motomizu, Speciation of arsenic(III) and arsenic(V) by inductively coupled plasma-atomic emission spectrometry coupled with preconcentration system, Talanta, 66 (2005) 529-533. https://doi.org/10.1016/j.talanta.2004.09.024

A. P. Packer, V. S. T. Ciminelli, A simplified flow system for inorganic arsenic speciation by preconcentration of As(V) and separation of As(III) in natural waters by ICP-MS, Atomic Spectroscopy, PerkinElmer Life and Analytical Sciences, 26 (2005) 131–136. https://www.chemeurope.com/en/companies/14457/perkinelmer-life-and-analytical-sciences-inc.html

D. Gohosh, M. N. Luwang, Arsenic detection in water: YPO4:Eu3+ nanoparticles, J. Solid State Chem., 232 (2015) 83-90. https://dx.doi.org/10.1016/j.jssc2015.09.009

G. Tang, J. Wang, Y. Li, X. Su, Determination of arsenic(III) based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine 6G, RSC Adv., 5 (2015) 17519-17525. https://dx.doi.org/10.1039/c4ra16789a

E. Majid, S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luons, Electrochemical Determination of Arsenite Using a Gold Nanoparticle Modified Glassy Carbon Electrode and Flow Analysis, Anal. Chem., 3 (2006) 762-769. https://doi.org/10.1021/ac0513562

S. Sirawatcharin, A. Saithongdee, A. Chaicham, B. Tomapatanaget, A. Imyim, N. Praphairaksit, Naked-eye and colorimetric detection of arsenic (III) using difluroboron-curcumin in aqueous and resin bead support system, Anal. Sci., 30 (2014) 1129-1134. https://doi.org/10.2116/analsci.30.1129

L. Zhang, X-R. Chen, S-H. Wen, R-P. Lianh, J-D. Qiu, Optical sensors for inorganic arsenic detection, Trends Anal. Chem., 118 (2019) 869-879. https://doi.org/10.1016.j.trac.2019.07.013

A. Lopez, Y. Zhang, J. Liu, Tuning DNA adsorption affinity and density on metal oxide and phosphate for improved arsenate detection, J. Colloid Interface Sci., 493 (2017) 249-256. https://doi.org/10.1016/j.jcis.2017.01.037

K. Chauham, P. Singh, B. Kumari, R. K. Singhal, Synthesis of new benzothiazole Schiff base as selective and sensitive colorimetric sensor for arsenic on-site detection at ppb level, Anal. Methods, 9 (11) (2017) 1779-1785. https://doi.org/10.1039/c6AY03302D

K. J. Parker, S. Kumar, D. A. Pearce, A. J. Sutherland, Design, synthesis and evaluation of a fluorescent peptidyl sensor for the selective recognition of arsenite, Tetrahedron Lett., 46 (2005) 7043-7045. https://doi.org/10.1016/j.tetlet.2005.08.058

M. S. Hosseini, F. Belador, A novel spectrofluorometric method for the determination of arsenic in human hair using Dy2O3-doped CeO2 nanoparticles, Analyst, 139 (2014) 5007-5013. https://doi.org/10.1039/C4AN00746H

J. R. Kalluri, T. Arbneshi, S. A. Khan, A. Neely, P. Candice, B. Varisli, M. Washington, S. McAfee, B. Robinson, S. Banerjee, A. K. Singh, D. Senapati, C. Ray, Use of gold nanoparticles in a sample colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater, Chem. Int. Ed., 48 (2009) 9668-9671. https:// doi.org/10.1002/anie.200903958.

M. A. Karimi, A. Mohadesi, A. Hatefi-Mehrjardi, S. Z. Mphammadi, J. Yarahmadi,A. Khayrhah, Separation/preconcnetration and speciation analysis of trace amount of arsenate and arsenite in water samples using modified magnetite nanoparticles and molybdenum blue method, J. Chem., 2014 (2014) 1-9. https://doi.org/10.1155/2014/248065

V. Lenoble, V. Deluchat, B. Serpaud, J-C. Bollinger, Arsenite oxidation and arseate determination by molybdenem blue method, Talanta, 61 (2003) 267-276. https:// doi.org/10.1016/S0039-9140(03)00274-1

P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17(5) (2002) 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5

S. Hu, J. Lu, C. Jing, A novel colorimetric method for field arsenic speciation analysis, J. Environ. Sci., 24 (2012) 1341-1346. https:// doi.org/10.1016/s1001-0742(11)60922-4

S. Wang, C. N. Mulligan, Effect of natural organic matter on arsenic release from soils and sediments into groundwater, Environ. Geochem. Health, 28 (2006) 197-214. https://doi.org/10.1007/s/0653-005-9032-y

T. J. Sorg, A. S. C. Chen, L. Wang, Arsenic species in drinking water wells in the USA with high arsenic concentrations, Water Res., 48 (2014) 156-169. https://doi.org/10.1016/j.watres.2013.09.016

S. Bhattacharya, S. Sarkar, R. Shunmugam, Unique norbornene polymer based "in-field" sensor for As(III), J. Mater. Chem., 1 (2013) 8398–8405. https://doi.org/10.1039/c3ta11587a

Y. Wu, S. Zhan, F. Wang, L. He, W. Zhi, P. Zhou, Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution, Chem. Commun., 48 (2012) 4459-4461. https://doi.org/10.1039/c2cc30384a

S. Zhan, M. Yu, J. Lu, L. Wang, P. Zhou, Colorimetric detection of trace arsenic(III) in aqueous solution using arsenic aptamer and gold nanoparticles, Aust. J. Chem., 67 (2014) 813-818. https://doi.org/10.1071/CH13512

Y. Wu, S. Zhan, H. Xing, L. He, L. Xu, P. Zhou, Nanoparticles assembled by aptamers and crystal violet for arsenic(III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay, Nanoscale, 4 (2012) 6841-6849. https://doi.org/10.1039/c2nr31418e

M. Tang, G. Wen, A. Liang, Z. Jiang, A simple and sensitive resonance Rayleigh scattering method for determination of As(III) using aptamer-modified nanogold as a probe, J. Biol. Chem. Lumin., 29 (2014) 603-608. https://doi.org/10.1002/bio.2589

V. C. Ozaip, D. Cam, F. J. Hernandez, L. I. Hernandez, T. Schafer, H. A. Oktem, Small molecule detection by lateral flow strips via aptamer-gated silica nanoprobes, Analyst, 141 (2016) 2595-2599. https://doi.org/10.1039/C6AN00273K

A. Krishna TG, V. Tekuri, M. Mohan, D. R. Trivedi, Selective colorimetric chemosensor for the detection of Hg2+ and arsenite ions using Isatin based Schiff's bases; DFT Studies and Applications in test strips, Sensors Actuators: B. Chem., 284 (2018) 271-280. https:// doi.org/10.1016/j.snb.2018.12.003

Y. Wu, F. Wang, S. Zhan, L. Liu, Y. Luo, P. Zhou, Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(III), RSC Adv., 3 (2013) 25614–25619. https://doi.org/10.1039/c3ra44346a

K. Shrivas, R. Shankar, K. Dewangan, Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples, Sensors Actuators B: Chem., 220 (2015) 1376-1383. https://doi.org/10.1016/j.snb.2015.07.058

D. Vilela, M. C. Gonzalez, A. Escarpa, Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay, A review, Anal. Chim. Acta, 751 (2012) 24-43. https://doi.org/10.1016/j.acs.2012.08.043

N. Oksuz, S. Sacmaci, M. Sacmaci, A. Ulgen, A new fluorescence reagent: Synthesis, characterization abd application for speciation of arsenic (III)/(VI) in tea samples, Food Chem., 270 (2019) 579-584. https://doi.org/10.1016/j.foodchem.2018.07.076

S. S. Boxi, S. Paris, Fluorometric sensing of ultralow AS(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles, Dalton Trans, 44 (2015) 20464-20474. https:// doi.org/10.1039/c5dt03958d

G. Hodake, V. S. Vassilliadis, J-H. Choi, J. Jang, D. S. Lee, Facile synthesis of gold nanoparticles by amino acid asparagine: selective sensing of arsenic, J. Nanosci. Nanotechnol., 15 (2015) 7235-7239. https://doi.org/10.1166/jnn.2015.10561

B. S. Boruah, R. Biswas, Selective detection of arsenic (III) based on colorimetric approach in aqueous medium using functionalized gold nanoparticles unit, Mater. Res. Express, 5 (2018) 015059. https://doi.org/10.1088/2053-1591/aaa661

R. Qian, L. Ding, H. Ju, Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle, J. Am. Chem. Soc., 135 (2013) 13282-13285. https://doi.org/10.1021/ja406532e

Y. Liu, C. V. Huang, Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys, ACS Nano, 7 (2013) 11026-11034. https://doi.org/10.1021/nn4040694e

S. D. Rchardson, T. A. Ternes, Water analysis: emerging contaminants and current issues, Anal. Chem., 90 (2018) 398-428. https:// doi.org/10.1021/acs.analchem.7b00661

E. I. Brima, P. Haria, R. O. Jenking, D. A. Polya, A. G. Gault, C. F. Harrington, Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom, Toxicol. Appl. Pharmacol., 216 (2016) 122-130. https:// doi.org/10.1021/acs.analchem.7b04577

K.-M. Wai, S. Wu, X. Li, D. A. Jaffe, K. D. Perry, Global atmospheric transport and source-receptor relationships for arsenic, Environ. Sci. Technol., 50 (7) (2016) 3714-3720. https://doi.org/10.1021/acs.est.5b05549

V. C. Ezeh, T. C. Harrop, A sensitive and selective fluorescence sensor for the detection of arsenic(III) in organic media, Inorg. Chem, 51 (2012) 1213-1215. https://doi.org/10.1021/ic2023715

L. P. Wu, Y. F. Li, C. Z. Huang, Q. Zhang, Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles, Anal. Chem., 78 (2006) 5570-5577. https://doi.org/10.1021/ac0603577

J. Ling,Y. F. Li, C. Z. Huang, Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles, Anal. Chem., 4 (2009) 1707-1714. https://doi.org/10.1021/ac802152b

B. Dey, R. Saha, P. Mukherjee, A luminescent-water soluble inorganic co-crystal for a selective pico-molar range arsenic(iii) sensor in water medium, Chem. Commun., 49 (2013) 7064-7066. https://doi.org/10.1039/c3cc43574A

W. Siangproh, O. Chailapakul, K. Songsrirote, Simple and fast colorimetric detection of inorganic arsenic selectively adsorbed onto ferrihydrite-coated silica gel using silver nanoplates, Talanta, 153 (2016) 197–202. http:// doi.org/10.1016/j.talanta.2016.03.028

R. Kanjanawarut, X. Su, Colorimetric detection of DNA using unmodified metallic Nanoparticles and peptide nucleic acid probes, Anal. Chem, 81 (2009) 6122-6129. https://doi.org/10.1021/ac900525k

S.-H. Wen, R.-P. Liang, L. Zhang, J.-D. Qiu, Multimodal assay of arsenite contamination in environmental samples with improved sensitivity through stimuli-response of multiligands modified silver nanoparticles, ACS Sustain. Chem. Eng., 6 (2018) 6223−6232. https://doi.org/10.1021/acssuschemeng.7b04934

R. Wilson, The use of gold nanoparticles in diagnostics and detection, Chem. Soc. Rev., 37 (2008) 2028-2045. https://doi.org/10.1039/B712179M

L. E. S. Figueroa, M. E. Morague, E. Climent, A. Agostini, R. M. Manez, F. Sancenon, Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2010-2011, Chem. Soc. Rev., 42 (2013) 3485-3613. https://doi.org/10.1039/c3cs35429f

N. Priyadarshni, P. Nath, Nagahanumaiah, N. Chanda, DMSA-functionalized gold nanorod on paper for colorimetric detection and estimation of arsenic (III and V) contamination in groundwater, ACS Sustain. Chem. Eng., 6 (2018) 6264−6272. https://doi.org/10.1021/acssuschemeng.8b00068

P. Nath, N. Priyadarshni, N. Chanda, Europium-coordinated gold nanoparticles on paper for the colorimetric detection of arsenic(III, V) in aqueous solution, ACS Appl. Nano Mater., 1 (2018) 73−81. https://doi.org/10.1021/acsanm.7b00038

J. Zhang, C.-L. Zhang, S.-H. Yu, Tuning gold nanoparticle aggregation through the inhibition of acid phosphatase bioactivity: A plasmonic sensor for light-up visual detection of arsenate (AsV), Chem. Plus Chem., 81 (2016) 1147- 1151. http:// doi.org/10.1002/cplu.201600355J

W. He, C. Z. Huang, Y. Fang, J. Ping, R. G. Yang, P. F. Zohou, J. Wang, One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods, Anal. Chem., 22 (2008) 8424-8430. https://doi.org/10.1021/ac801005d

S. S. Mendez, O. D. Renedo, M. J. A. Martines, Development of acid phosphatase based amperometric biosensors for the inhibitive determination of As(V), Talanta, 9 (2012) 301-306. https://doi.org/10.1016/j.talanta.2012.02.037

P. Nath, R. K. Arun, N. Chanda, A paper based microfluidic device for the detection of arsenic using a gold nanosensor, RSC Adv., 4 (2014) 59558-59561. https:// doi.org/10.1039/c4ra12946f

Z.-Q. Tan, J-F. Liu, Y-G. Yin, Q-T. Shi, C-Y. Jing, G-B. Jiang, Colorimetric Au nanoparticle probe for speciation test of arsenite and arsenate inspired by selective interaction between phosphonium ionic liquid and arsenite, ACS Appl. Mater. Interfaces, 6 (2016) 19833-19839. https:// doi.org/10.1021/am5052069

N. Xia, Y. Shi, R. Zhang, F. Zhao, F. Liu, L. Liu, Simple, rapid and label-free colorimetric assay for arsenic based on unmodified gold nanoparticles and a phytochelatin-like peptide, Anal. Methods, 4 (2012) 3937-3941. https:// doi.org/10.1039/c2ay25803j

R.-P. Liang, Z.-X. Wang, L. Zhang, J.-D. Qiu, Label-free colorimetric detection of arsenite utilizing G-/T-rich oligonucleotides and unmodified Au nanoparticles, Chem. Eur. J., 19 (2013) 5029-5033. http:// doi.org/10.1002/chem.201203402

N. Yogaraja, S. S. H. Tsai, Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics, Environ. Sci.: Water Res. Technol., 1 (2015) 426-441. https://doi.org/10.1039/C5EW00099H

T. Yang, X.-X. Zhang, J.-Y. Yang, Y.-T. Wang, M.-L. Chen, Screening arsenic (III)-binding peptide for colorimetric detection of arsenic (III) based on the peptide induced aggregation of gold nanoparticles, Talanta, 177 (2017) 212-216. http:// doi.org/10.1016/j.talanta.2017.07.005

S.-H. Wen, X.-L. Zhong, Y.-D. Wu, R.-P. Liang, L. Zhang, J.-D. Qiu, Colorimetric assay conversion to highly sensitive electrochemical assay for bimodal detection of arsenate based on cobalt oxyhydroxide nanozyme via arsenate absorption, Anal. Chem., 91 (2019) 6487-6497. https://doi.org/10.1021/acs.analchem.8b05121

M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: A review, ACS Sustain. Chem. Eng., 7 (2013) 713-723. https://doi.org/10.1021/SC4000199

C. A, De Villiers, M. C. Lapsley, E. A. H. Hall, A step towards mobile arsenic measurement for surface water, Analyst, 140 (2015) 2644-2655. https:// doi.org/10.1039/c4an02368d

N. Yadav, A. K. Singh, Dual anion colorimetric and fluorometric sensing of arsenite and cyanide ions, RSC Adv., 6 (2016) 100136–100144. https:// doi.org/10.1039/c6ra19781g

D. Pooja, S. Saini, A. Thakur, B. Kumar, S. Tyagi, M. K. Nayak, A turn-on thiol functionalized fluorescent carbon quantum dotbased chemosensory system for arsenite detection, J. Hazard. Mater., 328 (2017) 117–126. http:// doi.org/10.1016/j.jhazmat.2017.01.015

G. K. Das, C. S. Bonofacio, J. De Rojas, K. Liu, K. Benthem, Ultra-long magnetic nanochains for highly efficient arsenic removal from water, J. Mater. Chem. A, 2 (2014) 12974-12981. https://doi.org/10.1039.C4TA02614D

L. Zhang, X-Z. Cheng, L. Kuangn, A-Z. Xu, R. P. Liang, J-D. Qui, Simple and highly selective detection of arsenite based on the assembly-induced fluorescence enhancement of DNA quantum dots, Biosens. Bioelectron., 94 (2017) 701-706. https://doi.org/10.1016/j.bios.2017.03.057

Z. Liu, G. Li, T. Xia, X. Su, Ultrasensitive fluorescent nanosensor for arsenate assay and removal using oligonucleotide-functionalized CuInS2 quantum dot@magnetic Fe3O4 nanoparticles composite, Sens. Actuators B Chem., 220 (2015) 1205-1211. https://doi.org/10.1016/j.snb.2015.06.111

A. A. Ensafi, N. Kazemifard, B. Rezaei, A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation, Biosens. Bioelectron., 77 (2016) 499-504. https://doi.org/10.1016/j.bios.2015.10.011

S. K. Pal, N. Akhtar, S. K. Ghosh, Determination of arsenic in water using fluorescent ZnO quantum dots, Anal. Methods, 8 (2016) 445-452. https://doi.org/10.1039/C5AY02472B

S. Cosnier, C. Mousty, X. Cui, X. Yang, Specific determination of As(V) by an acid phosphatase−polyphenol oxidase biosensor, Anal. Chem., 78 (2006) 4985-4989. https://doi.org/10.1021/ac060064d

X. Ge, Y. Ma, X. Song, G. Wang, H. Zhang, Y. Zhang, H. Zhao, β-FeOOH nanorods/carbon foam-based hierarchically porous monolith for highly effective arsenic removal, ACS Appl. Mater. Interfaces, 9 (2017) 13480-13490. https://doi.org/10.1021/ascami.7b01275

Y. Zhou, X. Huang, C. Liu, R. Zhang, X. Gu, G. Guan, C. Jiang, L. Zhang, S. Du, B. Liu, M.-Y. Han, Z. Zhang, Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic(III) with discernable scale as low as 5 ppb, Anal. Chem., 88 (2016) 6105−6109. https://doi.org/10.1021/acs.analchem.6b01248

S. Roy, G. Palui, A. Banerjee, The as-prepared gold cluster-based fluorescent sensor for the selectivedetection of As(III) ions in aqueous solution, Nanoscale, 4 (2012) 2734-2740. https://doi.org/10.1039/c2nr11786j

M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, G. E. D. Poineru, Green synthesis of metalic nanoparticles via biological entities, Materials, 8 (2015) 7278-7308. https://doi.org/10.3390/ma811577

M. Bagan, S. Atilgan, Selective and sensitive turn-on fluorescent sensing of arsenite based on cysteine fused tetraphenylethene with AIE characteristics in aqueous media, Chem. Commun., 49 (2013) 495325-5327. https:// doi.org/10.1039/c3cc42238k

F. Sancenon, L. Pascual, M. Oroval, E. Pznrr, R. M. Manez, Gated silica mesoporous materials in sensing applications, Chem. open, 4 (2015) 418-437. https://doi.org/10.1002/open.201500053

X. He, Y. Zhao, D. He, K. Wang, F. Xu, J. Tang, ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles, Langmuir, 28 (2012) 12909-12915. https://doi.org/10.1021/19302767b

M. Oraval, E. Climent, C. Coll, R. Eritja, A. Avino, M. Dolores, F. Saneenon, R. M. Manez, P. Amoros, An aptamer-gated silica mesoporous material for thrombin detection, Chem. Commun., 49 (2013) 5480-5482. https://doi.org/10.1039/C3CC42157k

C. Argyo, V. Weiss, C. Brauchle, T. Bein, Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery, Chem. Mater., 26 (2014) 435-451. https://doi.org/10.1021/cm402592t

M. Oroval, C. Coll, A. Bernardos, M. D. Marcos, R. M. Manez, D. G. Shchukin, F. Sancenon, Selective fluorogenic sensing of As(III) using aptamer-capped nanomaterials, ACS Appl. Mater. Interfaces, 9 (2017) 11332−11336. https://doi.org/10.1021/acsami.6b15164

R. Liu, Z. Chen, Y. Wang, Y. Cui, H. Zhu, P. Huang, W. Li, Y. Zhao, Y. Tao, X. Gao, Nanoprobes: quantitatively detecting the Femtogram level of arsenite ions in live cells, ACS Nano, 5 (2011) 5560-5565. https://dx.doi.org/10.1021/nn200994r

S. Lohar, S. Pal, B. Sen, M. Mukherjee, S. Banerjee, P. Chattopadhyay, Selective and sensitive turn-on chemosensor for arsenite ion at the ppb level in aqueous media applicable in cell staining, Anal. Chem., 86 (2014) 11357-11361. https://doi.org/10.1021/ac503255f

M. Tuzen, K. O. Saygi, I. Karaman, M. Soylak, Selective speciation and determination of inorganic arsenic in water, food and biological samples, Food and chemical toxicology, 48 (2010) 41-46. https://doi.org/10.1016/j.fct.2009.09.012

R. Lv, J. Zhang, H. Li, L. Yang, S. Liao, W. Gu, X. Liu, An amino-decorated dual fucntionalized metal-organic framework for highly selective sensing of Cr(III) and Cr (VI) ions and detection of nitroaromatic explosive, J. Master. Chem. A, 4 (2016) 15494-15500. https://doi.org/10.1039/C6TA05965A

Y-L. Shi, W-Q. Chen, S-L. Wu, Y-G. Zhu, Anthropogenic cycles of arsenic in mainland china: 1990–2010, Environ. Sci. Technol., 51(13) (2017) 1670-1678. https://doi.org/10.1021/acs.est.6b01669

D. S. Tawflk, R. E. Viola, Arsenate replacing phosphate: alternative life chemistries and ion promiscuity, Biochem., 50 (2011) 1128-1134. https://doi.org/10.1021/b12004529

Y. Liu, C. Yu, Z. Cao, D. Shvarts, W. Trogler, A highly sensitive enzymatic catalysis system for trace detection of arsenic in water, Chem. Eur. J., 23 (2017) 10289-10292. https://doi.org/10.1002/chem.201702769

B. Liu, J. Liu, DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection, Chem. Commun., 50 (2014) 8568-8570. https://dx.doi.org/10.1039/c4cc03264k

M. Elias, A. Wellner, K. G. Azulay, E. Chabriere, J. A Vorholt, T. J. Erb, D. S. Tawflk, The molecular basis of phosphate discrimination in arsenate-rich environments, Nature, 491 (2012) 134-137. https://doi.org/10.1021/ac0661455

D. Xie, Y. Ma, Y. Gu, H. Zhou, H. Zhang, G. Wang, Y. Zhang, H. Zhoa, Bifunctional NH2-MIL-88(Fe) metal–organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media, J. Mater. Chem. A, 5 (2017) 23794–23804. https://doi.org/10.1039/c7ta07934f

T. Wang, R. D. Milton, S. Abdellaoui, D. P. Hickey, S. D. Minteer, Laccase inhibition by arsenite/arsenate: determination of inhibition mechanism and preliminary application to a self-powered biosensor, Anal. Chem., 88 (2016) 3243-3248. https://doi.org/10.1021/acs.analchem.5b04651

S.-H. Wen, R.-P. Liang, H.-H. Zeng, L. Zhang, J.-D. Qiu, CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of guanosine 5′-monophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of acid phosphatase activity, Microchim. Acta, (2019) 1-10. https://doi.org/10.1007/s00604-018-3125-7

S. Lohar, A. Sahana, A. Banerjee, A. Banik, S. K. Mukhopadhyay, J. S. Matalobos, D. Das, Antipyrine based arsenate selective fluorescent probe for living cell imaging, Anal. Chem., 85 (2013) 1778-1783. https://dx.doi.org/10.1021/ac3031338

A. S. M. Islam, R. Alam, A. Katarkar, K. Chaudhuri, M. Ali, Di-oxime based selective fluorescent probe for arsenate and arsenite ions in a purely aqueousmedium with living cell imaging applications andH-bonding induced microstructure formation, Analyst, 140 (2015) 2979-2983. https://dx.doi.org/10.1039/c5an00236b

D. C. RoBler, S. Lotters, L. Fernando, M. D. Fonte, Author declaration: have you considered equity, diversity and inclusions, Nature, 584 (2020) 525-525. https://doi.org/10.1038/d41586-020-02429-8

Published
2023-03-28
How to Cite
Nawarathne, M., Weerasinghe, R., & Dharmarathne, C. (2023). Colorimetric and Fluorometric detection of arsenic: arsenate and arsenite. Analytical Methods in Environmental Chemistry Journal, 6(01), 29-57. https://doi.org/10.24200/amecj.v6.i01.224
Section
Review Article